WWW.MATHSFORALL.ORG

DEVOIR COMMUN DE MATHÉMATIQUES Niveau: 4e Durée: 2 heures Calculatrice autorisée

EXERCICE 1: 5 points

Cet exercice est un QCM (questionnaire à choix multiple). Pour chaque question, une seule des réponses proposées est correcte. Pour chaque question, écrire son numéro suivi de la lettre (A ou B ou C) correspondant à la réponse qu'on estime correcte. On ne demande aucune justification de réponse à cet exercice. Chaque bonne réponse rapporte 0,5 points. Chaque mauvaise réponse ne rapporte et n'enlève aucun point.

N°	Énoncé de la question	Réponse A	Réponse B	Réponse C
1	On pose $I = (2x-3)(4x+2)-(x-7)(x+7)$. En développant, en réduisant et en ordonnant I ; on obtient	$I = 7x^2 + 8x - 43$	$I = 7x^2 - 8x - 43$	$I = 7x^2 - 8x + 43$
2	On pose $J = x^2 - 6x + 9 + (6 - 2x)(9 - x)$. En factorisant J; on obtient	J = 3(x-3)(x+7)	J = 3(x-3)(x-7)	J = 3(x+3)(x-7)
3	On pose $I = (2x-3)(4x+2)-(x-7)(x+7)$. En calculant la valeur numérique de I pour $x = 5$; on obtient	I = 178	I = - 130	I = 130
4	L'écriture décimale du résultat de $-654 \times 10^{-2} + 2 \times 10^{-3}$ est	- 6,56	- 6,542	- 6,538
5	La notation scientifique du résultat de $-654 \times 10^{-2} \times 2 \times 10^{-3}$ est	$-1,308\times10^{-5}$	$-1,308\times10^{-2}$	$-1,308\times10^{-3}$
6	Le résultat de -0.00479×10^3 est un nombre décimal d'ordre	2	0	1
7	Le volume d'une sphère de rayon 6 cm est égal à	$72\pi \text{ cm}^3$	288π cm ³	96π cm ³
8	L'aire d'une sphère de rayon 9 cm est égale à	324π cm ²	27π cm ²	108π cm ²
9	Le schéma ci-dessous représente deux droites (D) et (D') symétriques par rapport à un point E tel que la distance de E à (D) est 6,2 cm. (D) E (D') H EH = 6,2 cm La distance des droites (D) et (D') est égale à	12,4 cm	3,1 cm	6,2 cm
10	Sur la figure ci-contre : M (MN) // (BC) C A B ABC est un triangle. M est un point de (AB) et N est un point de (AC) tel que (MN) // (BC). Alors, d'après la propriété de Thalès,	$\frac{AN}{AC} = \frac{AM}{BM}$	$\frac{AN}{AC} = \frac{AB}{AM}$	$\frac{AN}{AC} = \frac{AM}{AB}$

EXERCICE II: 6 points

1) a) Décomposer 780 et 936 en produit de facteurs premiers ; puis, déduire le PGCD et le PPCM de 780 et 936.

b) Déterminer la fraction irréductible égale à $\frac{7.8}{9.36}$.

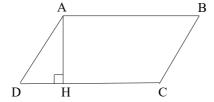
c) Recopier et compléter :
$$\frac{-3,19}{7,8} + \frac{73}{936} = \frac{-780}{780} + \frac{73}{936}$$
$$= \frac{\times 6}{780 \times 6} + \frac{73 \times 5}{936 \times 5}$$
$$= \frac{-4680}{4680} + \frac{-73 \times 5}{4680}$$

2) On pose
$$P = \frac{10^{-3} \times (-7)^3}{(10^{-2})^6 \times 10^{11}}$$
, $V = \frac{2^3 - 1}{5^2}$ et $T = 6 + \frac{10^{-3} \times (-7)^3}{(10^{-2})^6 \times 10^{11}} \div \frac{2^3 - 1}{5^2}$.

Calculer P, V et T. On laissera chaque résultat sous forme de fraction irréductible ou sous forme d'opposée d'une fraction irréductible.

EXERCICE III: 4 points

- 1) a) Construire un rectangle EFJI tel que [EF] est horizontal, EF = 9,6 cm, EI = 6 cm, [IJ] est au dessus de [EF] et [EI] est à gauche.
 - b) Placer le point L tel que mes $JIL = 30^{\circ}$, l'angle EIL est obtus et IL = 4 cm.
 - c) Placer les points K et G tels que IJKL est un parallélogramme et FJKG est un parallélogramme.
 - d) H est le point tel que EFGHIJKL est un pavé droit (un parallélépipède rectangle).


Terminer la représentation en perspective cavalière du pavé droit EFGHIJKL.

2) Construire un segment [OR] horizontal tel que OR = 5 cm et construire le cercle de centre O passant par R ; puis, représenter la sphère de centre O et de rayon OR .

EXERCICE IV: 5 points

Le schéma ci-dessous représente un parallélogramme ABCD et un triangle ADH rectangle en H tels que AB = 6,4 cm, AH = 3,6 cm,

AD = 45 mm et l'angle BCD est obtus.

- 1) a) Construire le parallélogramme ABCD et le triangle ADH en vraie grandeur.
 - b) Calculer DH.
- 2) On note E le symétrique de D par rapport au point C et F le point d'intersection des droites (AE) et (BC).
 - a) Expliquer pourquoi (BC)//(AD) et AD = BC.
 - b) Expliquer pourquoi C est le milieu de [DE].
 - c) Expliquer pourquoi F est le milieu de [AE].
 - d) Calculer FC en justifiant le calcul effectué.
- 3) a) On note G le milieu de [AD] .

Expliquer pourquoi (GF)//(DE).

b) Placer le point D' symétrique de D par rapport à (AH); puis, construire l'image du cercle de centre D et de rayon 2 cm par la symétrie orthogonale d'axe (AH).

BON COURAGE!

WWW.MATHSFORALL.ORG